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Translated language as the object of study

The map of Translation Studies
by Chesterman(2009)13 based on Holmes (1988)21

Baker (1993)4: translations as texts in their own right,
not ‘deformation’ of sources (Berman, 1985)7



Area of research: Empirical Translation Studies

Empirical (Corpus-based) Translation Studies (CBTS)
seeks to explain linguistic choices in translations vs. non-
translations by language-pair internal or external factors.



Translationese and translated language

Translationese :
properties that make translations statistically different
from comparable non-translations19

∙ reflects linguistic, cognitive and sociolinguistic aspects of
cross-cultural communication and translation process,

∙ describes and explains linguistic specificity of translations, ‘the
property of being a translation’, which makes translated
language a variety of the target language (TL),

∙ is revealed through comparison of translations and TL
non-translations in the same register as the source texts,

∙ exists at document level (document length > 450 tokens).



Suggested translational tendencies12

S-universals
*** how the translators process the source language (SL) ***

1. interference/transfer, ‘shining through’ effect50

translations follow ST rather than TL patterns, e.g frequency
calques, strange strings

2. explicitation
spelling things out rather than leave them implicit
▶ more frequent use of conjunctions, connectives,
▶ more re-phrasing, comments, elaboration in brackets
▶ ST non-finite clauses > TT finite clauses
▶ ST pro-forms (this, they) and ST ellipsis > TT full NPs

3. levelling-out (aka Standardisation/Convergence)
higher level of homogeneity of translations against sources;

4. lengthening



Suggested translational tendencies, cont.

T-universals
*** how the translators process the TL ***

1. simplification
lexical (lower TTR=less varied voc, lower lexical density),
syntactic (higher readability scores), stylistic (less figurative)

2. normalisation
“tendency to exaggerate features of the target language and to
conform to its typical patterns” 5

3. unique items hypothesis
TL specific items are underrepresented (e.g German
passive-like constructions: sein+zu, lassen+sich)

NB! Matching trends and specific translationese indicators is tricky.



Translationese varieties

Factors which give rise to different types of translationese:
register and genre :

∙ a explicitation tendency in German popular
scientific translation is weaker in economic texts;

∙ varying degree of tolerance to literal
translation37;

∙ same tendency is manifested through different
indicators29

source language (SL) :
(Evert, 2017; Nikolaev, 2020)18;40,

competence level : how does professional translation differs from a
layman/novice rendition?39;30;8,

method of translation : MT vs humans vs post-editing51.
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meth

Methodology of a translationese study

related tasks ∙ translation detection (translations vs
non-translations),

∙ SL detection,
∙ translation direction detection

required corpora ∙ translations vs non-translation
∙ ideally: sent-aligned documents and

register-comparable non-translations
methods ∙ univariate statistical analysis55;16

∙ feature selection
∙ text classification (single feature52;23,

multivariate30)
∙ mildly-supervised methods (LDA, PCA)18;17 and

exploratory clustering44;34
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Typical resources for a translationese study

Translations

Sources (SL) TL Originals

translation detection taskparallel corpus

comparable



Numerical representation: hand-crafted features
(1) Count-based features:

∙ frequencies of individual items/patterns (e.g. relative that)
∙ cumulative frequencies of listed items (connectives, pronouns)
∙ frequencies of PoS tags, syntactic dependencies (and

combination)
∙ character43 or word ngrams (inc. on ‘mixed’ representations6)

(2) Calculated metrics and scores:
∙ lexical variety, density, TTR
∙ average of senses/syllables per word
∙ sentence depth as parse tree depth, mean dependency distance
∙ ratios of N/V, 1st frequency quartile bigrams, neologisms
∙ Flesch-Kincaid Reading Ease score46

∙ LM entropy scores



Numerical representation: feature-learning approaches

(3) Embedding spaces learnt from delexicalised corpus versions:
∙ sequences of PoS tags, semantic tags15;14

(4) Embeddings from embedding models
∙ static (fasttext, word2vec)
∙ contextualised (BERT, XLM-Roberta)2;9



Interpretable translationese indicators

Desired properties:
∙ well-motivated (by contrastive studies,

variational/register analysis, prior TS);
∙ content-independent;
∙ reasonably frequent;
∙ reliably extractable;
∙ language-independent or shared by SL and TL

Lexicogrammar and discourse features fit the bill best.

32 features from Vered Volansky (2015)52 are used as a benchmark.



Expected deviations and exploratory setups
Structural delexicalised features from UD annotations

well-known indicators and
expectations for translations:
∙ lower lexical variety, TTR,
∙ lower lexical density,
∙ overuse of discourse markers,
∙ higher sentence length,
∙ overuse of pronouns.

patterns expected from
English-to-Russian studies:
∙ higher hierarchical distance,
∙ underuse of nsubj:pass (ex.

‘resheno prodlit’), negative
particles, deverbal nouns,

∙ overuse of connectives and
modal predicates.

Abstract lexical features

∙ ratios of 1-2-3-grams from
top/bottom freq quartiles,

∙ mean and 𝜎 for sentence
perplexity scores.

∙ ratios of highly- and
negatively-collocated
phrases,

∙ using NPMI and Tscore
association metrics.



Document-level binary SVM classifier results
direction register F1 (%) reference
FR-EN Europarl 83.6 Rabinovich (2016)44

DE-EN Europarl 80.0
Kunilovskaya (2024)Kunilovskaya et al. 28

EN-DE Europarl 88.8
EN-DE mass media 79.0 Kunilovskaya,Lapshinova (2020)31

EN-DE
multiregister 75-77 Evert (2017)18

DE-EN
EN-ES Europarl 96.2

Poltorak (2022)42
EN-ES fiction 77.3
EN-ES technical 97.6 Ilisei (2010)24

EN-RU mass media 90.2 Kunilovskaya (2023)27

EN-RU fiction 75.6

Kunilovskaya (2021)32
DE-RU fiction 84.4
ES-RU fiction 74.4
SV-RU fiction 71.1
UK-RU fiction 59.4

Translation detection results on lexicogrammatical and discursive features
(in a multivariate setup) across translation directions and registers (on
professional published translations)
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translation detection results

Visualisations

The specificity of EN-to-DE
translations captured by the
shining-through indicators

Distribution of texts by category across
registers (EN-to-RU)
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What’s a good translation?

How good is this translation?

Adequacy usefulness, fitness for communicative purpose,
acceptability41;22

Accuracy semantic similarity: How much of the meaning
expressed in the source is also expressed in the target

Fluency readability, compliance with TL norms
from Flawless English to Incomprehensible

Undifferentiated approach:

How much do you agree that the translation adequately expresses
the meaning of the source?



Quality labels/scores: Human assessment (of HT or MT)
(1) Real-life quality judgments:

education, certification, industrial quality control
(2) Experimental setups

Assessment purpose: quantitative or diagnostic
∙ summative vs formative
∙ holistic vs analytical

Methods:
1. direct assessment,
2. (analytical) rubrics,
3. error annotation.

+ in MT: post-editing time/effort (not discussed)

Granularity: document-, sentence-, word-level



Assessment method 1: Direct Assessments (DA)

from Moorkens (2018)38

from Graham (2015)20



DA: recommendations for producing MT benchmarks

from Läubli et al. (2020)35

∙ use language professionals as annotators,
∙ evaluate documents, not sentences; or sentences in context,
∙ evaluate fluency in a monolingual setup, separately from

accuracy,
∙ avoid reference translations → use bilingual setups for

accuracy,
∙ use original source texts.



Assessment method 2: Rubrics

Diploma in Translation
(DipTrans, UK certification)

1. comprehension, accuracy
and register (max 50);

2. grammar (morphology,
syntax, etc.), cohesion,
coherence and organisation
of work (max 35);

3. technical aspects:
punctuation, spelling,
accentuation, names, dates,
figures, etc (max 15).

BANDS: distinction, merit, pass,
fail with numeric marks

American Translators
Association (ATA)

1. usefulness/transfer (max
35);

2. terminology/style (max 25);
3. idiomatic writing (max 25)
4. target mechanics (max 15)

BANDS: standard, strong,
acceptable, deficient and minimal
(Williams, 2013; Yuan, 2018)54;56



Assessment method 3: harmonised DQF-MQM error
taxonomy1

a standard but adjustable way to categorise and measure
translation quality

Top-level categories (with some subcategories)
∙ accuracy (addition/omission, improper exact TM match,

mistranslation, untranslated)
∙ fluency (grammar, spelling, character encoding)
∙ locale convention (address/currency format, shortcut key)
∙ style (awkward, company style, unidiomatic)
∙ terminology (inconsistent with termbase)
∙ verity (culture-specific references)

1https://www.qt21.eu/wp-content/uploads/2015/11/QT21-D3-1.pdf

https://www.qt21.eu/wp-content/uploads/2015/11/QT21-D3-1.pdf


Digression 1: Quality-related NLP tasks in MT

Quality Evaluation

measure distance from the
candidate translation to another
translation (aka reference),
usually a human translation

Most used metrics:
∙ BLEU family
∙ HTER
∙ COMET47

∙ ...

in HT this means punishing
creativity and variety

Quality Estimation

devise a way (supervised or
unsupervised) to predict quality
labels without references

Approach:
∙ feature-engineering

(QuEst++49)
∙ using embeddings

(deepQuest25,
TransQuest45)

Granularity:
∙ sentence-level
∙ word-level (predicting errors)
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MT: quality evaluation and estimation tasks

Digression 2: Humans vs machines in translation
How human translation (HT) differs from MT:

1. HT is essentially document-level →
sentence-level representations less adequate

2. HT is more varied, less literal →
reference-based approaches not good
higher granularity of quality analysis required

3. in HT publishable quality is expected
4. lack of reliable quality labels / available datasets →

same as in MT: k 0.2-0.4 (Graham, 2015)
5. HT allows no direct access to internal processes →

no ‘glassbox’ features
6. HT and SOTA NMT might need focus on different aspects of

quality: fluency and accuracy respectively
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Is translationese indicative of quality?

Yes:
more translated, lower quality

∙ the link is suggested or
explored in previous work:
for HT48;17;36, for MT1;3,

∙ professionals are less deviant
than students (based on
univariate analysis)33:

∙ quality in HT is mostly
about fluency11,

∙ human annotators have
difficulties differentiating
between the three aspects of
quality10

No:
it is a subtle inherent property

∙ absence of translationese can
signal reduced accuracy or
another type of
cross-cultural
communication
(transcreation, adaptation)

∙ Wein (2023)53: human
annotators cannot identify
translations (also see Baroni
(2006)6.

∙ Jimenez-Crespo (2023)26:
pejorative implications of
translationese are unethical
towards translators.



Research subcorpora
1. subsets from Russian Learner Translator corpus

of various sizes by type of quality annotation

2. comparable professional translations: 404 parallel docs, 384 K
words (BBC Russian Service, InoSMi, RNC);

3. comparable non-translations: 497 docs, 523 K words (RNC)
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experimental evidence

Four types of quality labels/scores
Operational definitions of quality

∙ Holistic judgments: agreed assessment of competition
jury/exam board in real life; top and bottom grades converted
to ‘bad’, ‘good’ labels, verified in an additional annotation
experiment (𝛼 = 0.524, accuracy 91%).

∙ Scores from error annotation used as part of feedback to
students in a real-life practical translation course, which
implemented accuracy-fluency distinction (top-level category
agreement: 80.5% of errors in the same location, 𝛼 = 0.535).

∙ Direct assessment: perceived quality for sentences presented in
the context on a 100-point scale (documents: 𝛼 = 0.541,
sentences: 𝛼 = 0.463)

+ Known ontological status of translations produced by defined
subjects (students, professionals).
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Results for HTQE on translationese indicators using SVM

All results are at document level on the best-performing features.

Translationese classification on T-features: F1 = 90.2%
(professional), 88.96% (students)

Binary labels, SVM, F1-score
∙ best-worst: 68.9%
∙ students-prof: 73.3%

Continuous scores, SVR, Pearson r
error-annotation scores: 0.43
direct assessment: 0.23



HTQE previous research results (alternative approaches)

Pearson correlation coefficient (r) between predicted and true scores

∙ Yuan (2018, 2020)56

▶ setting: English-to-Chinese, 458 student translations to 6
sources (sic!),
4 continuous scores (ATA rubrics),
360 hand-crafted language-independent features

▶ best result
∙ document-level (features): r = 0.62-0.76

(cf. MTQE WMT20 r = 0.53)
∙ Zhou (2019)57

▶ setting: Japanese-to-English, unsupervised approach:
correlation between ST/TT similarity/distance measures based
on word vectors and overall quality graded by humans for 130
sentence pairs from camera manuals

▶ result: r = 0.53
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experimental evidence

Summary

1. Translated language is a subsystem of the TL.
2. Machines pick up statistical deviations better than humans.
3. The relevance of translationese for quality estimation is low

(especially if quality is assessed at sentence level).
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The end

Thank you!

Questions?
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